Tegyük fel, hogy adva van egy valamilyen G halmaz, amelyen értelmezve van egy kétváltozós művelet. Nevezzük ezt a műveletet szorzásnak és jelöljük \cdot-tal, vagy egymás után írással. Például egy a és egy b elem szorzatát jelöljük a\cdot b-vel vagy ab-vel.
Az így kapott (G,\cdot ) algebrai struktúrát félcsoportnak nevezzük, amennyiben az említett művelet asszociatív. Azaz tetszőleges a, b és c elemek esetén teljesül az alábbi:
(a\cdot b)\cdot c = a\cdot (b\cdot c)Csoportnak nevezzük az olyan félcsoportokat, amelyek esetén az asszociativitáson kívül a műveletre nézve létezik neutrális elem is (14.7. Definíció), továbbá a művelet invertálható (14.9. Definíció). Egy csoport esetén a neutrális elemet általában e-vel vagy 1-gyel szoktuk jelölni, és ilyenkor egységelemről beszélünk. Egy a elem inverzét a^{-1}-gyel szoktuk jelölni. Tetszőleges a elem esetén teljesülnek tehát az alábbiak:
\begin{aligned}a\cdot e &= e\cdot a = a \\ a\cdot a^{-1} &= a^{-1}\cdot a = e\end{aligned}Amennyiben a művelet a fentieken felül még kommutatív is, úgy Abel-csoportról vagy kommutatív csoportról beszélünk. Abel-csoportok esetén a csoportműveletet tipikusan a + szimbólummal, a neutrális elemet 0-val, egy a elem inverzét pedig -a-val szoktuk jelölni. Ilyenkor a neutrális elemet nullelemnek, az a elem inverzét pedig a ellentettjének nevezzük.